Domain radios-online.de kaufen?

Produkt zum Begriff Machine Learning ML:


  • Introducing Machine Learning
    Introducing Machine Learning

    Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. ·        14-time Microsoft MVP Dino Esposito and Francesco Esposito help you ·         Explore what’s known about how humans learn and how intelligent software is built ·         Discover which problems machine learning can address ·         Understand the machine learning pipeline: the steps leading to a deliverable model ·         Use AutoML to automatically select the best pipeline for any problem and dataset ·         Master ML.NET, implement its pipeline, and apply its tasks and algorithms ·         Explore the mathematical foundations of machine learning ·         Make predictions, improve decision-making, and apply probabilistic methods ·         Group data via classification and clustering ·         Learn the fundamentals of deep learning, including neural network design ·         Leverage AI cloud services to build better real-world solutions faster     About This Book ·         For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills ·         Includes examples of machine learning coding scenarios built using the ML.NET library

    Preis: 29.95 € | Versand*: 0 €
  • Privacy-Preserving Machine Learning
    Privacy-Preserving Machine Learning

    Privacy-Preserving Machine Learning is a practical guide to keeping ML data anonymous and secure. You'll learn the core principles behind different privacy preservation technologies, and how to put theory into practice for your own machine learning. Complex privacy-enhancing technologies are demystified through real world use cases forfacial recognition, cloud data storage, and more. Alongside skills for technical implementation, you'll learn about current and future machine learning privacy challenges and how to adapt technologies to your specific needs. By the time you're done, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance.Large-scale scandals such as the Facebook Cambridge Analytic a data breach have made many users wary of sharing sensitive and personal information. Demand has surged among machine learning engineers for privacy-preserving techniques that can keep users private details secure without adversely affecting the performance of models.

    Preis: 55.63 € | Versand*: 0 €
  • Distributed Machine Learning Patterns
    Distributed Machine Learning Patterns

    Practical patterns for scaling machine learning from your laptop to a distributed cluster.In Distributed Machine Learning Patterns you will learn how to:Apply distributed systems patterns to build scalable and reliable machine learning projectsConstruct machine learning pipelines with data ingestion, distributed training, model serving, and moreAutomate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo WorkflowsMake trade offs between different patterns and approachesManage and monitor machine learning workloads at scaleScaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelinesDistributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.about the technologyScaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. In this book, Kubeflow co-chair Yuan Tang shares patterns, techniques, and experience gained from years spent building and managing cutting-edge distributed machine learning infrastructure.about the bookDistributed Machine Learning Patterns is filled with practical patterns for running machine learning systems on distributed Kubernetes clusters in the cloud. Each pattern is designed to help solve common challenges faced when building distributed machine learning systems, including supporting distributed model training, handling unexpected failures, and dynamic model serving traffic. Real-world scenarios provide clear examples of how to apply each pattern, alongside the potential trade offs for each approach. Once you've mastered these cutting edge techniques, you'll put them all into practice and finish up by building a comprehensive distributed machine learning system.

    Preis: 56.7 € | Versand*: 0 €
  • Managing Machine Learning Projects
    Managing Machine Learning Projects

    The go-to guide in machine learning projects from design to production. No ML skills required! In Managing Machine Learning Projects, you will learn essential machine learning project management techniques, including: Understanding an ML project's requirements Setting up the infrastructure for the project and resourcing a team Working with clients and other stakeholders Dealing with data resources and bringing them into the project for use Handling the lifecycle of models in the project Managing the application of ML algorithms Evaluating the performance of algorithms and models Making decisions about which models to adopt for delivery Taking models through development and testing Integrating models with production systems to create effective applications Steps and behaviours for managing the ethical implications of ML technology About the technology Companies of all shapes, sizes, and industries are investing in machine learning (ML). Unfortunately, around 85% of all ML projects fail. Managing machine learning projects requires adopting a different approach than you would take with standard software projects. You need to account for large and diverse data resources, evaluate and track multiple separate models, and handle the unforeseeable risk of poor performance. Never fear this book lays out the unique practices you will need to ensure your projects succeed!

    Preis: 56.7 € | Versand*: 0 €
  • Was ist Python Machine Learning?

    Python Machine Learning bezieht sich auf die Verwendung von Python-Programmierung, um maschinelles Lernen zu implementieren. Dabei werden Algorithmen und Modelle erstellt, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Python bietet eine Vielzahl von Bibliotheken wie Scikit-learn, TensorFlow und Keras, die das Entwickeln von Machine-Learning-Anwendungen erleichtern. Mit Python Machine Learning können komplexe Probleme gelöst und Muster in großen Datenmengen entdeckt werden.

  • Was sind die unterschiedlichen Anwendungen von Machine Learning in der heutigen Technologie?

    Machine Learning wird in der Bilderkennung eingesetzt, um Objekte auf Fotos zu identifizieren. In der Medizin wird es genutzt, um Krankheiten frühzeitig zu erkennen. Im Bereich des Online-Marketings wird Machine Learning verwendet, um personalisierte Werbung zu schalten.

  • Wie kann die Merkmalsauswahl die Genauigkeit und Effizienz von Machine-Learning-Modellen verbessern?

    Durch die Auswahl relevanter Merkmale können unnötige Daten reduziert werden, was die Modellkomplexität verringert und Overfitting verhindert. Dies führt zu präziseren Vorhersagen und schnelleren Berechnungen. Eine sorgfältige Merkmalsauswahl kann auch die Interpretierbarkeit des Modells verbessern, indem nur die wichtigsten Merkmale berücksichtigt werden.

  • Wie wird Machine Learning dazu benutzt, um große Datenmengen zu analysieren und Muster oder Trends zu identifizieren? Was sind die potenziellen Anwendungen und Herausforderungen von Machine Learning in verschiedenen Bereichen?

    Machine Learning wird verwendet, um große Datenmengen zu analysieren, indem Algorithmen Muster und Trends erkennen. Potenzielle Anwendungen sind personalisierte Empfehlungssysteme, medizinische Diagnosen und Betrugserkennung. Herausforderungen sind Datenschutz, Ethik und die Notwendigkeit von qualitativ hochwertigen Trainingsdaten.

Ähnliche Suchbegriffe für Machine Learning ML:


  • Grundkurs Machine Learning (Wilmott, Paul)
    Grundkurs Machine Learning (Wilmott, Paul)

    Grundkurs Machine Learning , Maschinelles Lernen - alle Grundlagen! Paul Wilmott ist für seine erhellende und unterhaltsame Darstellung angewandter Mathematik bekannt. Von der linearen Regression bis zu Neuronalen Netzwerken führt er Sie durch alle Verfahren, und zwar komplett Software-unabhängig. Der Vorteil dabei: Jeder Schritt ist schwarz auf weiß zu sehen, kein Framework kann etwas "verstecken", es geht immer um die Sache selbst. Mit vielen Beispielen, Grafiken und Schritt-für-Schritt-Kästen. Für alle, die wirklich verstehen wollen, wie Maschinen lernen. Aus dem Inhalt: Lineare Regression k-Nearest Neighbors Naive Bayes-Klassifikatoren k-Means-Algorithmus Support Vector Machines Logistische Regression Selbstorganisierende Karten Entscheidungsbäume Reinforcement Learning Neuronale Netze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20200724, Produktform: Kartoniert, Titel der Reihe: Rheinwerk Computing##, Autoren: Wilmott, Paul, Seitenzahl/Blattzahl: 256, Themenüberschrift: COMPUTERS / General, Keyword: Hand-Buch Bücher lernen Studium Grundlagen Kurse Workshops Tutorials Wissen Anleitung Training Ausbildung; Robotik; Informatik verstehen; Programmierung programmieren; KI-Welt AI; Künstliche Intelligenz; Software-Entwicklung; Coder Coden; Neuronale Netze; Deep Learning; Mathematik, Fachschema: Informatik~Programmiersprachen~EDV / Theorie / Allgemeines, Fachkategorie: Informatik~Informationstechnik (IT), allgemeine Themen, Sprache: Deutsch, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Thema: Verstehen, Text Sprache: ger, Verlag: Rheinwerk Verlag GmbH, Verlag: Rheinwerk Verlag GmbH, Breite: 175, Höhe: 17, Gewicht: 480, Produktform: Klappenbroschur, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0006, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 2327150

    Preis: 29.90 € | Versand*: 0 €
  • Automated Machine Learning in Action
    Automated Machine Learning in Action

    Optimize every stage of your machine learning pipelines with powerful automation components and cutting-edge tools like AutoKeras and KerasTuner. Automated Machine Learning in Action, filled with hands-onexamples and written in an accessible style, reveals how premade machine learning components can automate time-consuming ML tasks.Automated Machine Learning in Action teaches you to automate selecting the best machine learning models or data preparation methods for your own machine learning tasks, so your pipelines tune themselves without needing constant input. You'll quickly run through machine learning basics thatopen upon AutoML to non-data scientists, before putting AutoML into practicefor image classification, supervised learning, and more.Automated machine learning (AutoML) automates complex andtime-consuming stages in a machine learning pipeline with pre packaged optimal solutions. This frees up data scientists from data processing and manualtuning, and lets domain experts easily apply machine learning models to their projects.

    Preis: 47.07 € | Versand*: 0 €
  • Machine Learning Engineering in Action
    Machine Learning Engineering in Action

    Machine Learning Engineering in Action lays out an approach to building deployable, maintainable production machine learning systems. You will adopt software development standards that deliver better code management, and make it easier to test, scale, and even reuse your machine learning code!You will learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You will even discover when not to use machine learningand the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike.Following established processes and methodology maximizes the likelihood that your machine learning projects will survive and succeed for the long haul. By adopting standard, reproducible practices, your projects will be maintainable over time and easy for new team members to understand and adapt.

    Preis: 55.63 € | Versand*: 0 €
  • Ensemble Methods for Machine Learning
    Ensemble Methods for Machine Learning

    Many machine learning problems are too complex to be resolved by a single model or algorithm. Ensemble machine learning trains a group of diverse machine learning models to work together to solve a problem. By aggregating their output, these ensemble models can flexibly deliver rich and accurate results.Ensemble Methods for Machine Learning is a guide to ensemble methods with proven records in data science competitions and real world applications. Learning from hands-on case studies, you'll develop an under-the-hood understanding of foundational ensemble learning algorithms to deliver accurate, performant models.About the TechnologyEnsemble machine learning lets you make robust predictions without needing the huge datasets and processing power demanded by deep learning. It sets multiple models to work on solving a problem, combining their results for better performance than a single model working alone. This "wisdom of crowds" approach distils information from several models into a set of highly accurate results.

    Preis: 56.7 € | Versand*: 0 €
  • Wie kann Machine Learning in verschiedenen Branchen eingesetzt werden und welche potenziellen Vorteile bietet diese Technologie?

    Machine Learning kann in verschiedenen Branchen wie Gesundheitswesen, Finanzwesen und Einzelhandel eingesetzt werden, um Daten zu analysieren, Muster zu erkennen und Vorhersagen zu treffen. Die potenziellen Vorteile dieser Technologie sind eine verbesserte Effizienz, bessere Entscheidungsfindung und die Möglichkeit, personalisierte Produkte und Dienstleistungen anzubieten. Machine Learning kann auch dazu beitragen, Kosten zu senken, Risiken zu minimieren und Innovationen voranzutreiben.

  • Wie können Objekte in einem Bild mithilfe von künstlicher Intelligenz und Machine Learning erkannt und klassifiziert werden?

    Objekte können in einem Bild mithilfe von künstlicher Intelligenz und Machine Learning durch Trainieren von Algorithmen auf großen Datensätzen erkannt werden. Diese Algorithmen analysieren Merkmale wie Formen, Farben und Texturen, um Objekte zu identifizieren. Anschließend werden die erkannten Objekte klassifiziert und entsprechend benannt.

  • Wie kann die Qualität von Trainingsdaten verbessert werden, um die Genauigkeit von Machine-Learning-Modellen zu erhöhen?

    Die Qualität von Trainingsdaten kann verbessert werden, indem fehlerhafte oder unvollständige Daten bereinigt werden. Zudem können zusätzliche relevante Datenquellen hinzugezogen werden, um die Vielfalt der Trainingsdaten zu erhöhen. Schließlich ist es wichtig, die Daten regelmäßig zu überprüfen und zu aktualisieren, um sicherzustellen, dass sie aktuell und korrekt sind.

  • Was sind die Anwendungen von Machine Learning in verschiedenen Branchen und wie beeinflusst es die Zukunft der Technologie?

    Machine Learning wird in der Gesundheitsbranche zur Diagnose von Krankheiten und zur personalisierten Medizin eingesetzt. In der Finanzbranche hilft es bei der Betrugsprävention und der Risikobewertung. In der Automobilindustrie ermöglicht es autonomes Fahren und verbessert die Sicherheit auf den Straßen. Machine Learning wird die Zukunft der Technologie maßgeblich beeinflussen, indem es Prozesse automatisiert, die Effizienz steigert und neue Möglichkeiten für Innovationen eröffnet.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.